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of her peers who work (n):

Utility Function: U(wi,n) =gn + w; (g —c+ N(l - )“n i 1))
(3)

where the g and ¢ parameters are as defined in (1) and p and 7 are as
defined in (2). We may interpret actor i’s utility as the total production
by peers (gn), plus the personal cost and benefit of working (g — c)w;
and 7’s share of the selective incentive, u(1 — 4.5)w;.
An actor’s Inclination to Work (IW) is the change in utility
associated with the work choice:
ou

Inclination to work: IW(n) = . (g—c)+ '“(1 - ’Inj_1> (4)

A positive inclination to work (IW > 0) means that the actor will
profit from choosing to work, while IW < 0 implies a net loss for choos-
ing to work.! A larger number of peers working always implies a smal-
ler share of a rival incentive for any worker and thus a lower
inclination to work. If 2 = 0 or no peers are working (n = 0), then there
is no expected loss to peers and Eq. (4) reduces to IW =g — ¢ + u.

Regulatory interests also may depend on the number of peers work-
ing and on an actor’s own work choice. All members receive a personal
benefit g from each peer’s work for the collective good, so the baseline
regulatory interest is positive. However, when a rival (1 > 0) incentive
is valuable, it may also create a perverse regulatory interest in oppos-
ing peers’ participation, because increasing the number of peers who
work (n) will also increase the loss of the incentive to peers. The par-
tial derivative of U with respect to n represents the change in utility
due to a marginal change in the number of peers working. This yields
the regulatory interest function:

A
Regulatory Interest Function: RI(w;,n) = @ =g—w; 7'[12
(n+1)

(5)

Kitts (2006) analyzed (4) and (5) to demonstrate five general propo-
sitions about actors’ inclinations to work and their regulatory interests
operating in isolation. Notably, he proved that increasing the value of

1The inclination to work remains the same whether the work choice is treated as
binary w; € {0,1} or as a proportion of effort in the interval [0, 1]. Because an actor’s
utility depends linearly on w;, she will never prefer an interior value of w; (partial effort)
to either extreme value.
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a rival selective incentive (or increasing the rivalness of a valuable
incentive) diminishes regulatory interests, regardless of the para-
meters of the production function, g or ¢, for any finite group size
(N) or current level of collective action (n) in the model. However,
increasing the value of the incentive obviously increases the incli-
nation to work. To consider outcomes where both processes operate
simultaneously, he used simulation.

Computational Experiments

Actors in the simulations make a first-order choice (Work or Shirk)
followed by a second-order choice (Promote work, Oppose work, or
Abstain from enforcement); in each case they are myopic, selecting
the locally preferred option. Actors who Promote or Oppose must
pay a cost of enforcement, e.

The choice to pressure peers requires each actor to predict the
outcome of her enforcement efforts, but calibrating this prediction is
complicated for actors: Changes in peers’ work choices affect their
own regulatory interests, possibly leading to changes in norms before
an actor has observed the direct effect of her own pressure on peers’
work choices. Assuming that actors have no means to accurately calcu-
late the scope of their own influence, Kitts (2006) assigned a uniform
random variable to represent actors’ subjective scope of influence. For
each actor i, 0; is the maximum number of peers i expects to be able to
influence, varying from the extreme belief that i’s social pressure will
have no effect (0; = 0) to the extreme belief that i can convince all peers
to change (0, = N — 1).

The total force acting upon each actor to work or shirk in the simu-
lation is the simple sum, V, of all actors’ choices to Promote (v; = 1),
Oppose (v; = —1), and Abstain (v; = 0). This sum of normative pressure
must be weighed against individuals’ own inclinations (IW). The
strength of social influence is represented as a parameter o, “group
cohesiveness.” This parameter (0 <a < 1) weighs the extent that each
actor’s work choice (w;) is influenced by social pressure (V) versus the
member’s own inclination to work as in (4). At « = 0, social norms have
no effect on behavior, but as « approaches 1.0, behavior is increasingly
driven by peer pressure.

Two computational experiments let the first-order and second-order
processes operate in tandem. Actors’ choices to promote or oppose
peers’ work may depend on their own choices to work, and their
choices to work may depend on their peers’ choices to promote or
oppose. The simulation used a conventional sequential decision model
(cf. Heckathorn, 1990) to derive predictions from the model: The
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work choice was updated in random sequence over actors, then the
enforcement choice was updated in the same fashion, with these
two steps repeated for a number of rounds sufficient to ensure a
stable result.

Both experiments predicted the stable proportion of actors choosing
to work (Participation) in the same baseline collective action problem
(g=1,¢c=5,e=2,N = 10) beginning from the same initial conditions
(universal free riding at both the first and second levels). The first
experiment investigated participation over the space of parameters
value (u) of incentives and cohesiveness (o), at both the minimum
(A =0) and maximum (41 = 1) of rivalness of incentives. This investi-
gation showed that in the model collective action depends on a
three-way interaction of the rivalness of incentives (ranging from
independence to zero-sum competition), value of selective incentives
(ranging from worthless to very valuable), and group cohesiveness
(ranging from ineffective peer influence to extremely powerful peer
influence). Under the condition of high rivalness, selective incentives
and cohesiveness each have positive main effects, but collective action
collapses when both incentives and cohesiveness are strong. Under the
condition of low rivalness, this interaction of cohesiveness and the
value of incentives does not obtain.

The second experiment considered the middle range of cohesiveness
(also allowing for actor-level heterogeneity in susceptibility to influ-
ence) so peer influence and individuals’ inclinations were both impor-
tant. Those experiments mapped the response surface over a broad
range of incentive value and over the entire range of rivalness from
A =0to A = 1. The resulting map revealed an intriguing nonmonotonic
relationship of incentive value to collective action, and an interaction
with rivalness. At low rivalness, collective action increases with incen-
tive value, then crashes precipitously, and then rises again. Above a
critical value of rivalness, this curious relationship of incentive value
to collective action turns upside-down. Mathematical analysis in this
article will provide a decisive explanation of this pattern and several
other findings from the computational experiment.

Limitations of Simulation

After first becoming prominent in the physical and natural sciences,
simulation is now proliferating in the social sciences as a tool for devel-
oping and refining theory (Macy and Willer, 2002). Indeed, freedom
from concerns about analytical tractability has allowed scholars great
flexibility to consider complex social dynamics in computational
experiments. As a tradeoff, simulation has only a narrow capacity to
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prove general statements about a model. Simulation based on a model
can prove minimally that a result is a possible consequence of a set of
assumptions (Axelrod, 1997). Simulation can also show how the model
typically behaves under precisely specified conditions, but cannot
show that an observed pattern will obtain in any conditions not
explicitly examined. For example, sensitivity analysis may show us
that a particular result obtains from a variety of different starting
points; however, we cannot conclude on the basis of simulation that
the result will obtain from any initial condition (unless of course the
state space is narrow enough to explore all conditions). When the
model is stochastic, we also cannot conclude that a particular outcome
will always (or never) result from the same inputs even after observing
many simulation results. Lastly, performing simulations over a very
long time span may show us that results are remarkably consistent
over time, but we cannot conclude on the basis of simulation that a
pattern is dynamically stable—only that it appears stable over the
time span observed. Mathematical analysis may sometimes be used
as a complement to simulation to make such general claims about a
model’s generality, robustness, insensitivity to initial conditions, and
dynamic stability.?

Kitts (2006) performed fine-grained manipulations of parameters
to describe the shape of the model’s response surface, and used a
large number of replications to guard against sampling error on
the model’s stochastic response. He also provided sensitivity analy-
ses in arrays of simulations that manipulated otherwise fixed (non-
experimental) parameters, such as the distribution of influence
scope (0), the size of the group (N), and the cost of enforcement
(e), or altered auxiliary model assumptions, such as protocols for
updating actor choices. Such procedures increase our confidence in
the robustness of qualitative conclusions, but simulation research
cannot demonstrate anything strictly about the model’s behavior in
conditions not examined.

Having described some limitations of the simulation method, I will
detail some of the specific assumptions that Kitts (2006) used for the

2For example, Kitts (2006) asserted that some simulation outcomes were
“converged,” or dynamically stable. He pointed out that in the sequential decision model
if all actors pass up a turn without changing their work or enforcement choices, then the
model has reached equilibrium. In this model, there is no force to change behavior if all
actors are presently occupying their locally-preferred choice. Thus, if no neighbors have
changed their behavior then the available choices remain the same to each and no actors
will ever change. This conclusion is easy to show mathematically, but simulation alone
would not allow this insight.
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purpose of making the sequential decision model computationally
tractable:

e Simulations began with standard initial conditions, with all actors
shirking at the first order (not working for the collective good) and
at the second order (not enforcing norms on their peers).

e The subjective scope of influence (0) among actors was random,
drawn from a uniform distribution in [0, N — 1] and unrelated to
any other actor characteristics or behaviors.

e Susceptibility to peer influence («) was either homogeneous across
actors (Experiment 1) or randomly distributed across actors and
unrelated to other actor characteristics (Experiment 2).

e Social relations were undifferentiated. All actors were influenced by
the total pressure of group members (a simple sum of all members’
enforcement choices), not differently by particular peers.

This article jettisons these assumptions and provides new general
propositions about the model’s behavior that will hold true regardless
of the specification of the influence process, either as it is perceived by
actors or as it plays out in behavior.

Analysis of Model

To give a more general characterization, I will now show that there are
boundaries on the model’s behavior that do not depend on several of
the specifying assumptions used in the computational experiments.
These boundaries can be used to predict outcomes analytically, with-
out running simulations, in specified regions of the parameter space.
They also improve our understanding of the model’s behavior overall,
accounting for the shape of the response surface and telling us where
initial conditions or other details of the computational model may or
may not influence outcomes.

The first boundary, Voluntary Participation, obtains where the
actor’s cost of working (¢) equals the benefit of working when all
N — 1 peers are working, or u(1 — /11%) + g. It is convenient to express
this boundary as an inequality on the range of the value of the
incentive:

C e 3 (c—g)N
Voluntary Participation Boundary: u > N_(N_-10J N -1 (6)

3By “voluntary,” I mean only that behavior is not coerced by peers. It is obviously
motivated by the selective incentive, so it is in no way analogous to “volunteerism.”
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When the incentive is on or below this curve, it is insufficient to
compensate all members for working, so the temptation to free ride
appears. When the incentive is above this curve, free riding will never
be profitable in any state of the model, regardless of the other
parameter values.

Proposition 1. If the incentive value is above the Voluntary Partici-
pation boundary, no actor will be inclined to free ride.

This is easily proven. Recall that an actor’s inclination to work
(IW) will be a decreasing function of the number of peers working
(n) whenever 1 >0 and p > 0, because of the falling share of the
selective incentive. Further, an actor’s inclination to work will be
independent of the number of peers working (n) whenever 2 =0 or
w =0, so IW must be a nonincreasing function of n in the model. If
an actor is inclined to work (IW > 0) when all peers are working
(n =N — 1), she will thus be inclined to work at all lesser levels of
n. Therefore, all actors are personally inclined to work above the Vol-
untary Participation boundary (and will work unless antisocial
norms prevent them from doing so).

If N—-1 is the number of i’s peers and n is the number of
peers who are working, then N —n — 1 is the number of peers who
are shirking and (N — n — 1)g is the quantity of collective good that
is lost to i by their shirking. The next boundary, Futility of Pro-
motion, exists where the quantity of collective good that i would
receive by converting all of the shirking peers to working, or
(N —n — 1)g, does not exceed i’s cost of enforcing norms, e. This con-
dition, e > (N — n — 1)g, guarantees that promoting work will never
be profitable for any actor. It will be useful to place all fixed para-
meters on the right side to give a range of the variable n where pro-
moting work can never be profitable:

Futility of Promotion Boundary: n>N-1 —§ (7)
This boundary is obviously defined with respect to the number of
peers working (n), but does not depend on actors’ influence scope
(0) or susceptibility to influence (o).

Proposition 2. When collective action reaches or exceeds the Futility
of Promotion boundary, no actor will choose to enforce prosocial
norms.

This proposition is also easy to prove. If (7) is satisfied, promoting
work is not profitable for an actor who may convince all shirking
peers to work. We may assume without loss of generality that i has
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unlimited scope of influence because if i is unable to influence all
shirking peers then the benefit of converting shirkers will be dimin-
ished and P2 will still hold. Similarly, competition over a rival incen-
tive may make promoting work less attractive (only for workers who
expect to receive the incentive), but it will not affect the absolute
boundary where prosocial norms cannot appear. If the collective good
is a strictly increasing function of the number of actors who partici-
pate, then if (7) is satisfied promoting working will never be profitable
regardless of an actor’s work choice (w;), how many peers an actor
expects to influence (0), or how effective influence is in the model
(o). This proposition is not as general as the others because it depends
on the variable state of the model (n), but it will be useful for proving
propositions about system-level behavior.

The other boundaries concern the conditions under which antisocial
norms, opposing peers’ work for the collective good, will never appear
under the model. An actor i’s willingness to oppose peers’ work at a
particular time depends dynamically on i’s own work choice (w;), on
the current level of work among i’s peers (n), and on i’s expected scope
of influence (0;). It is helpful then to find a boundary for the computa-
tional experiment where antisocial norms will never appear, regard-
less of w; or 0;. I can restrict the discussion here without loss of
generality to the case where the scope of influence (6;) is unlimited,
because constraining i’s subjective scope of influence can only make
opposing work less beneficial for i (e.g. if it makes a worker i think
she is unable to hoard the entire incentive for herself by opposing
others’ work). If I identify a condition where opposing peers’ work will
not be profitable for an actor with unlimited scope of influence then it
will also apply for actors of limited scope, including (trivially) actors
who have no power to influence anyone.

An important boundary exists where the incentive that could
be hoarded by forcing all n working peers to shirk, or ;25 u/, falls
below the enforcement cost e plus the loss of n peers’ work for the
collective good, or e + ng. It is convenient to rearrange this inequality
as a range of incentive value—a value of y below which enforcing
antisocial norms will never be profitable at a given level of collective
action among peers (n):

1
Immaunity From Opposition Boundary: u< %ﬁw (8)

This inequality provides a boundary for u (based on the parameters
e, g, and 1) where antisocial norms cannot appear for each current level
of collective action (n). To identify the lowermost boundary, where no
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antisocial norms can ever occur, I find the value of n in
{1,2,3,...,N — 1} that minimizes the right side of the inequality and
substitute this value for n. If the resulting inequality is satisfied for
a value p, then u is below the Immunity from Opposition boundaries
for all possible levels of collective action. The resulting inequality will
define the global boundary over all states of the model, below which
no antisocial norms can ever emerge. For the values of fixed para-
meters (e = 2; g = 1) used in the simulation study, n = 1 is such a criti-
cal value. I will refer to this lowermost curve as the Strong Immunity
boundary:
Strong Immunity Boundary: u < % 9)
The Strong Immunity boundary here exists where the extra incen-
tive that could be hoarded by forcing a single working peer to shirk
(Aut/2) would fail to exceed the benefit lost (g) by doing so plus the cost
(e) of enforcement. Proposition 3 follows:

Proposition 3. If the incentive value is within the Strong Immunity
boundary, no actor will enforce antisocial norms.

Antisocial norms can never appear (or be stable if they are intro-
duced exogenously) in the model when u is on or below the Strong
Immunity boundary. If (8) identifies a set of boundaries below which
opposing work will never be profitable (at given levels of n) then the
lowermost of these curves is the boundary below which opposing
work will never be profitable, for any n. In this study, if antisocial
norms are not profitable in the extreme case of n = 1—as specified
by the Strong Immunity boundary (9)—they will never be profitable
in any other state of the model. And this does not depend on hetero-
geneous parameters 0 or o so if it is true for any actor, it is true for
all others.

I define a more liberal boundary, where existing universal collective
action (w; = 1 and n = N — 1) is guaranteed protection from antisocial
norms. Substituting N — 1 for n in (8) yields the Weak Immunity
boundary:

N(e+ (N -1)g)

I ity B : <
Weak Immunity Boundary u< AN -1

(10)

When all peers are already working for the collective good, no actor
will profit from opposing work among peers if i is below this boundary.
In this condition the system can also maintain full productivity with-
out social pressure. Thus, the All-Work/None-Enforce equilibrium in
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this region is stable regardless of subjective effectiveness (0) or objec-
tive effectiveness («) of influence, but is not guaranteed to obtain from
any initial level of collective action, n.

The Immunity from Opposition boundary (8) would generate com-
parable curves for every other level of n between 1 and N — 1, but
the given boundaries will be sufficient to reproduce and explain the
overall shape of the response surface.

Previous propositions have defined specific constraints on individ-
ual actors’ behavior with respect to regions of the parameter space.
But knowing the actor-level constraints does not allow us to directly
predict the system-level behavior. For example, knowing that actors
will not be inclined to free ride above the Voluntary Participation
boundary (as specified in P1) does not guarantee anything about the
outcome of the dynamic system, as antisocial norms can force actors
to shirk above the Voluntary Participation boundary and prosocial
norms may prevent free-riding below the boundary. By combining
the various constraints on actor choices, however, I can derive the
ultimate outcome with certainty in some regions and also enrich our
understanding of the model’s behavior outside those regions.

To begin this broader analytic investigation of the model, I will
demonstrate a region where All-Work/None-Enforce is a globally
stable equilibrium. An equilibrium is globally stable when all trajec-
tories of the model approach it and do not escape it, regardless of
the initial conditions and following any exogenous perturbation. In
this region, I show that universal voluntary participation will appear
and remain under the model regardless of initial conditions, and
regardless of the subjective effectiveness (0) or objective effectiveness
(o) of influence.

Proposition 4 describes the privileged condition where collective
action flourishes without risk of either free riding or antisocial norms:

Proposition 4. In the range of incentive value above the Voluntary
Participation boundary and within the Strong Immunity boundary,
All-Work /None-Enforce is a globally stable equilibrium.

I have already shown that all actors will be inclined to work above
the Voluntary Participation boundary (and will work unless prevented
from doing so by antisocial norms). I have also already shown that no
actors will enforce antisocial norms below the Strong Immunity
boundary. If all actors are inclined to work (P1) and none will oppose
work (P3)—where both inequalities are satisfied—then all actors will
work. And once all actors are already working, then enforcement of
prosocial norms on peers could never be profitable and thus no one will
promote (P2). Although individuals may initially promote work by
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peers (so prosocial norms may be found in this region, outside of
equilibrium), this is transitory and enforcement will cease once the
trajectory has passed the Futility of Promotion boundary on the path
toward the cooperative equilibrium. If no actors will enforce any norm
at equilibrium, then the final result is independent of susceptibility to
influence (). I have thus shown that this outcome obtains regardless
of values for actors’ scope of influence (0), susceptibility to influence
(), or the initial or present state of working among actors (n or w).

We may appreciate the certainty that antisocial norms will never be
stable in the Strong Immunity condition, but this does not guarantee that
antisocial norms will be stable above that conservative boundary. At
higher levels of incentive value, it will always be profitable for a worker
to coerce a single working peer to shirk when n = 1, but it may not be
profitable for her to enforce antisocial norms once a large number of peers
are already working. If the current position of the model in state space
may affect its qualitative trajectory, then its final resting place may
depend on initial conditions or exogenous shocks. The outcome also
depends on details of the influence process. For example, actors with
low subjective scope of influence will be particularly sensitive to the
current level of work among peers in their decision to enforce norms.
Low scope workers will be more likely to free ride on enforcement of
antisocial norms when collective action is widespread.

Between the Voluntary Participation and the Weak Immunity from
Opposition boundaries, we can make a weaker (but no less certain)
claim about the All-Work/None-Enforce equilibrium:

Proposition 5. In the range of incentive value above the Voluntary
Participation and Strong Immunity boundaries but within the Weak
Immunity boundary, the All-Work /None-Enforce equilibrium is locally
(but not globally) stable.

That is, in this region of the parameter space all trajectories
sufficiently near the All-Work/None-Enforce equilibrium will con-
verge toward that equilibrium, but this result cannot be guaranteed
for any arbitrary initial condition. Nor can I describe the size of the
basin of attraction around that equilibrium or the out-of-equilibrium
behavior outside that basin without making assumptions about the
influence process. Proposition 5 is proven in the same way as P4, so
I abbreviate the explanation. In this region, the incentive is valuable
enough (given other parameters) to induce all members to work, but
weak enough that none will profit from opposing peers’ work when
all peers are working.

Having defined these three general boundaries (Voluntary Partici-
pation, Strong Immunity, and Weak Immunity) and described the
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FIGURE 1 Qualitative model boundaries (¢ =1, ¢ =5, e =2, N = 10).

model’s disposition with regard to these boundaries, I will plot them in
a way that facilitates comparison to the simulation results.* Figure 1
depicts the three boundaries, given the numerical values of fixed para-
meters (g =1,c =5, e =2, N =10) used in the simulations:

The intersections of the Voluntary Participation boundary with the
Strong Immunity and Weak Immunity boundaries occur at particular
values of rivalness (1) and these values may represent theoretically
important bifurcation points in the model. On the left side of these
critical values, the space between the boundaries represents effective
selective incentives and immunity (weak or strong) from antisocial
norms, whereas the space between the boundaries on the right side
of the bifurcation points represents dual threats of free riding and
antisocial norms. To find the intersection of Voluntary Participation

and Strong Immumty, I set ]% = 2(e/+g) and solve for /, yielding
A= H%ﬁ% Above this value of rivalness, the All Work/None

“The Immunity from Opposition and Futility of Promotion boundaries depend on the
state of the model (the current number of peers working, n), so they cannot be included
in this figure.
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Enforce equilibrium cannot be guaranteed.® For the numerical case
used in the experiments, this value is approximately A* = .638. To find
the intersection of Voluntary Participation and Weak Immunity, I set

(c-g)N  _ (e+(N-1L)g)N S 14 w __ (et(N-1g)N
Nf(z\im_ € (N71>f and solve for 1, yielding A _WW‘

When rivalness exceeds this critical value, antisocial norms can be
individually profitable regardless of the current level of collective
action (although they will still be enforced only by actors with suf-
ficient scope).® For the numerical case used in the experiments, this
value is approximately 1** = .815.

In the simulation, the numerical range of incentive value for the
region described in P4 is 40/(10 —91) < 1 < 6/4 when 0 < 4 < /*; the
range is simply p > 4 when rivalness is zero, because antisocial norms
will never emerge in that condition, and the region does not exist
when 4> 1*. The range of incentive value for the region described in
P5is6/4 < p < 12.22/1 when 0 < /1 < 1**; the range is undefined when
rivalness is zero, because in that condition there is no value of y where
the All-Work/None-Enforce equilibrium exists without being globally
stable, and it does not exist when A > 1**.

Application to Simulation Results

I also performed computational experiments replicating the protocol
specified in Kitts (2006), yielding response surfaces for working, pro-
moting work, and opposing work over the same ranges of incentive
value (@) and rivalness (1). Figure 2 shows the proportion working
for the collective good (Participation), Figure 3 shows the proportion
promoting work, and Figure 4 shows the proportion opposing work
over this space of incentive value (1) and rivalness (A).

First, see that productivity is low on the right edge of Figure 2,
below the Voluntary Participation boundary. Figures 3 and 4 show
that peer pressure to work explodes in this region, and is responsible
for much of the cooperation that emerges, but this area is free of
antisocial norms.

Now compare the fin-shaped region in all three simulation figures,
where all actors work and none enforce, to the analytical boundaries in
Figure 1. The globally stable equilibrium described in P4 lies between
the Voluntary Participation and Strong Immunity boundaries, to the

5This value approaches / = 2(e +g)/(c + 2¢ +g) as the group size (N) grows large. For
the values of per capita productiveness, cost of working, and cost of enforcement here,
this limiting value is 0.6.

5This value rapidly approaches . = 1.0 as the group size (N) grows large. That is, for
arbitrarily large groups, we can expect the locally stable equilibrium to exist unless the
incentive is near perfect rivalness.
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FIGURE 4 Antisocial norms over range of rivalness and value of incentive
g=1,¢c=5e=2, N=10).

left of their intersection. This matches the fin-shaped region exactly on
the right side (at the Voluntary Participation boundary) of Figure 2,
but the plateau of cooperation in the simulations actually extends
all the way to the Weak Immunity boundary. This shows that the
simulations overwhelmingly reached the locally stable cooperative
equilibrium under the simple influence model. In the strip between
the Strong Immunity and Weak Immunity boundaries, this All-Work/
None-Enforce equilibrium is in no sense determined. Of course, if the
model begins with universal cooperation as an initial condition, this
equilibrium would be reached by assumption, but the simulations
began with universal free riding, the least favorable condition for
collective action in the model.

At the intersection of Voluntary Participation and Weak Immunity
boundaries (1**) the intriguing bifurcation in model behavior appears:
The concavity of the relationship between productivity and the incen-
tive value reverses when rivalness exceeds this bifurcation point, as
the All-Work/None-Enforce equilibrium yields to the deleterious
region where the liabilities of first-order free riding and of second-order
antisocial norms both impede collective action. In this region, the indi-
vidual share of the incentive is too small to support full productivity,
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but yet is large enough to invite antisocial norms. This deleterious
region has the lowest productivity in Figure 2.

DISCUSSION

It will be instructive to consider the dynamics of cooperation in the
region between the Strong Immunity and Weak Immunity boundaries,
where the cooperative equilibrium exists but the system may be
trapped in a suboptimal equilibrium enforced by antisocial norms.
Examination of model trajectories from a start of universal free-riding
reveals that the early actor(s) to work in the deleterious region may
often oppose work among peers to hoard the incentive. We can regard
this as a novel and distinct “start-up problem” for collective action,
where the early-movers have a perverse incentive to oppose the late-
comers. Although the region described in P5 also faces this problem,
the system in that region only needs a critical mass of members to
begin working to sponsor a cascade of collective action that dissolves
antisocial norms, yielding the All-Work/None-Enforce equilibrium.

If informal control can turn against the collective good, this sug-
gests an intriguing twist on the second-order free-rider problem.
Free-riding at the second order can provide a net benefit for the collec-
tive in some conditions as well as a net loss in others. The deleterious
region plagued by both free riding and antisocial norms highlights a
particularly interesting result: The role of second-order control
depends not only on the parameters of the collective action problem,
but on the current level of participation. Second-order control is a
threat in lower levels of productivity, because a small number of
workers are more likely to oppose competition from other workers,
but it is necessary in higher levels of productivity, where the number
of workers exceeds the level that can be motivated by the incentive.
Thus, the effectiveness (and costs) of social influence may have
opposite effects at low and high levels of collective action, holding
constant all parameters of the collective action problem.

The original computational experiments were accompanied by
sensitivity analyses that animated the model response surface as auxili-
ary parameters were varied. Those simulations included a broad range of
enforcement costs, varying the incidence of second-order free riding.”
Some of the results were intuitive, such as the negative effect of enforce-
ment cost on participation in the lowest range of incentive value, where

"Kitts (2006) provided online appendices to animate the surface plots of
Work, Promote, and Oppose choices as enforcement costs rise from e =0 to e = 5:
hittp:/lwww.columbia.edu/~jak2190/ASR2006/
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collective action depends decisively on prosocial norms and antisocial
norms cannot be found. The observed result for the high-value/high riv-
alness-corner was more sophisticated. Collective action was moderately
widespread above the Voluntary Participation boundary (and outside
the deleterious region) when enforcement entailed no cost. Then, as
enforcement costs rose, the cooperative equilibrium spread out over a
broader space, and thus a ‘second-order free riding benefit’ led some
regions to overcome shirking. However, in other regions the level of par-
ticipation fell markedly as enforcement costs rose. Thus, the sensitivity
analyses suggested that the relationship between second order free
riding and collective action may be more complex than previously
understood. I pursue this question here.

To complement the previously published sensitivity analyses for the
simulations, I will discuss some ways that the certain bounds on model
behavior described here also vary with non-experimental parameters
N and e. This web page provides animated versions of Figure 1,
illustrating how the depicted boundaries depend on N and e:
http://www.columbia.edu/~jak2190/JMS2008/

First consider the boundaries as enforcement costs (e) rise from 0
to 5, corresponding to the sensitivity analyses reported above. See
that both Strong and Weak Immunity boundaries march outward
into higher ranges of u as e increases. The expanding All-Work/
None-Enforce region accounts for the areas where enforcement costs
increased cooperation in the computational experiment.® This happens
because increasing the cost of enforcement broadens the conditions
under which enforcement of antisocial norms will not be profitable.
On the other hand, collective action outside the boundaries of the
All-Work /None-Enforce region depends on prosocial norms, and thus
rising enforcement costs have a negative impact on collective action
virtually everywhere else. This is the familiar second-order free rider
problem.

8Remember that the Strong Immunity boundary is simply the Immunity from Oppo-
sition boundary evaluated at the level of n that minimizes the right side of (8). It is
necessary to return to this definition and slightly revise the Strong Immunity boundary
for higher e, because when e > 2 then n = 2 is a strictly more favorable condition for anti-
social norms than n = 1. In order for the Strong Immunity boundary to indicate the glo-
bal boundary where no antisocial norms will appear in any state of the model, the Strong
Immunity boundary is then piecewise-defined, u < 2(e+g)/42 where e <2g and
u < 3(e +2g)/2)1 where e > 2g. The first version applies to all of the simulations in Kitts
(2006) and all other results here, but the piecewise version is needed for the online explo-
ration of e over the range from 0 to 5. (This makes no substantive difference for any of my
conclusions.)
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Next note that the Weak Immunity boundary depends on group
size, but the Strong Immunity boundary does not. As a group grows
larger, the model predicts that universal productivity is locally stable
at much higher ranges of incentive value. However, this does not
imply that large groups are more likely to reach the high levels of
cooperation required to attain this equilibrium. Notably, the Volun-
tary Participation boundary increases more steeply with rivalness at
higher group sizes. Thus, as the group grows larger, a higher incentive
value is necessary to support voluntary participation at high levels of
rivalness.®

The assumptions that actors have equal power to influence and
influence relations are undifferentiated likely play an important role
in the model’s tendency to reach the locally stable All-Work/None-
Enforce equilibrium between the Strong Immunity and Weak Immun-
ity boundaries. If power were unequally distributed, a small minority
of early workers (only if they could be somehow impervious to anti-
social norms exerted within their own coalition) could coerce peers
to shirk while they hoard the incentive themselves. In those
conditions, the system would be more easily trapped in a suboptimal
equilibrium.

CONCLUSION

Previous analytical results proved that rivalness in selective
incentives leads to perverse regulatory interests and computational
experiments showed how this may lead to antisocial norms under
well defined conditions: Where incentives are too weak to justify
compliance, all actors have a regulatory interest in forcing peers to
work. In this standard scenario, collective action depends on peer
influence and will be undermined by second-order free riding or low
cohesiveness. When presented with valuable rival incentives, however,
members who receive the incentives will have a perverse interest in
opposing work among peers. In this scenario, effective social influence
can undermine collective action and second-order free riding or low
cohesiveness can save it.

Whereas earlier computational experiments had mapped out the
conditions where these two opposite scenarios obtain numerically

9The Voluntary Participation boundary always intersects the u axis (1 = 0) at a posi-
tive value (¢ — g) and increases at an accelerating rate with rivalness. The limiting value
of this boundary as N grows arbitrarily large is pu < (¢ —g)/(1 — 1), or 4/(1 — 1) in the
numerical illustration here. I discuss group size here only to explore local robustness,
not to make general arguments about the effect of group size.
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under the model, this article described a set of constraints on actor
behavior in the model that may be stated with certainty. It then
derived system-level consequences of these actor-level constraints,
yielding a set of bounds on micro-level and macro-level model dynam-
ics. This analysis was able to describe much of the model’s qualitative
behavior while relaxing assumptions about social influence processes
that had been required to make the simulations tractable. Doing so
lends confidence to previous inferences from simulation research,
although the results here are less comprehensive and intuitive.

More important, the analyses here explained patterns in model
behavior that were not comprehensible without the mathematical
investigation. For example, the simulation study had shown a more
sophisticated relationship of second-order free riding to collective
action than had been previously appreciated; increasing the enforce-
ment costs amplified collective action in some conditions and inhibited
it in others. The mathematical investigation showed how increasing
the costs of social influence may both broaden the conditions where
universal voluntary cooperation occurs by keeping antisocial norms
at bay in some regions where the selective incentive can motivate col-
lective action without prosocial norms, and yet diminish cooperation
outside those conditions by dampening prosocial norms where they
are needed. In regions where there is no globally stable equilibrium,
the mathematical analysis helps us understand the dynamics of com-
petition over rival incentives. For example, we may expect a distinct
start-up problem in collective action, where the first-movers oppose
later joiners in order to hoard rival incentives, such as prestige, asso-
ciated with participation. Lastly, the boundaries specified here provide
rigorous explanations for the shape of the response surface, including
the curious nonmonotonic effect of incentive value on collective action,
and its even more curious reversal of concavity at a critical value of
rivalness.

Computer simulation is often regarded as a rescue from the unrea-
listic and restrictive assumptions that may be required to make
mathematical analysis tractable. In investigating a previously
published computational experiment, this article employs analytics
as a complement to simulation. Rather than exhaustively specifying
how the model will behave, it merely identifies boundaries on the uni-
verse of observable behavior in the simulation. Those boundaries have
provided a lucid description of the qualitative shape of the response
surface, making both the dynamics and the equilibrium outcomes in
the simulation more intelligible. The analysis here also allowed for
some more general proofs, which are difficult or impossible to obtain
in simulation research.
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